

Published on Web 11/13/2009

Direct Synthesis of Cubic ZrMo₂O₈ Followed by Ultrafast In Situ Powder Diffraction

Jennifer E. Readman,[†] Sarah E. Lister,[†] Lars Peters,[‡] Jon Wright,[§] and John S. O. Evans^{*,†}

Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom, Christian-Albrechts-Universität zu Kiel, Institut für Geowissenschaften, Kiel, Germany, and European Synchrotron Radiation Facility, Grenoble, France

Received September 9, 2009; E-mail: john.evans@durham.ac.uk

There has been a considerable amount of interest in negative thermal expansion (NTE) phases which are of importance, for example, in the manufacture of low or zero expansion composite materials. The cubic AM2O8 family of materials are of particular interest as the magnitude and isotropic nature of the NTE give them great technological potential.¹⁻³ The exemplar material, cubic ZrW_2O_8 , has been widely studied and can be prepared by a variety of methods including high temperature synthesis from the component oxides at 1473 K followed by rapid quenching. Once this metastable phase is formed it is kinetically stable up to ~ 1050 K. There are two potential disadvantages of using ZrW₂O₈ in composite materials. First, it undergoes a phase transition from the α to β form which, although both phases show strong NTE, causes a discontinuity in the lattice parameters at \sim 450 K.^{4,5} Second, a pressure of 0.21 GPa induces a cubic to orthorhombic phase transition resulting in a denser structure with an $\sim 5\%$ lower volume and a less negative (or positive) coefficient of NTE which may be detrimental in applications.⁵

In contrast, the cubic form of ZrMo₂O₈ (γ-ZrMo₂O₈⁶) does not show any major discontinuities in lattice parameter with temperature and pressure induced transitions are reversible at room temperature,^{7,8} making it more attractive for composite materials. Unlike cubic ZrW_2O_8 , it has not been possible to synthesize γ -ZrMo₂O₈ directly from the constituent oxides, and the cubic phase has been assumed to be thermodynamically metastable at all temperatures.⁹ Synthesis at temperatures above 670 K gives the trigonal phase $(\alpha$ -ZrMo₂O₈),¹⁰⁻¹² while at lower temperatures the thermodynamically stable phase is monoclinic β -ZrMo₂O₈.^{11,13} The enthalpies of formation of some AM2O8 phases from the binary oxides were investigated by Varga et al.9 They found the enthalpy of formation becomes more endothermic from β -ZrMo₂O₈ $\rightarrow \alpha$ -ZrMo₂O₈ \rightarrow γ -ZrMo₂O₈ \rightarrow amorphous ZrMo₂O₈ and that the monoclinic β -ZrMo₂O₈ phase is the only enthalpically stable phase at room temperature. Preparation of ZrMo₂O₈ phases is further complicated by the volatility of MoO₃, and trigonal ZrMo₂O₈ has been shown to lose MoO_3 above ${\sim}1125~K.^{14}$

The recognized synthetic procedure for the formation of γ -ZrMo₂O₈ involves the careful decomposition of a hydrated precursor phase, ZrMo₂O₇(OH)₂·2H₂O, via another polymorph LT-ZrMo₂O₈.^{7,8,15} Work by Lind et al. highlighted that the precise reagents used in the synthesis of this precursor can significantly alter the ratios of γ -ZrMo₂O₈ and α -ZrMo₂O₈ formed upon dehydration, with the cubic γ -phase only being accessible in a very narrow temperature window.^{7,8}

Surprisingly we recently obtained indications that it may be possible to form the supposedly metastable cubic phase by firing the constituent oxides at high temperatures (\sim 1450 K) for a few

seconds followed by very rapid quenching. These conditions differ markedly from the careful kinetic control used in previous synthetic routes but proved hard to investigate in a conventional manner due to the extremely short time scales over which different phases appeared. In this communication we show that rapid in-situ powder X-ray diffraction experiments prove unambiguously that supposedly metastable cubic γ -ZrMo₂O₈ can be synthesized directly from the oxides. Full quantitative analysis of the reacting systems and observation of transient intermediates on time scales down to 0.1 s give significant insight into the process.

All in-situ experiments were carried out at beamline ID11 at the European Synchrotron Radiation Facility (ESRF) using a wavelength of 0.19902(2) Å. Stoichiometric amounts of ZrO₂ and MoO₃ were mixed and packed into 0.57 mm diameter Pt capillaries with a 0.04 mm wall thickness, and the ends mechanically sealed. A Frelon 2K CCD 2D detector¹⁶ was used at a minimum readout time of 20 ms and allowed collection of diffraction patterns of sufficient quality for quantitative Rietveld refinement in as little as 0.1 s. A mirror furnace was used to rapidly generate the high temperatures required for synthesis.¹⁷ The furnace was constructed from a ceramic body with three halogen lamps as the heat source. The temperature was controlled by the amount of power to the bulbs; quoted here as a simple % of maximum power. An approximate calibration of temperature versus heater power was carried out prior to data collection based on the thermal expansion of Al₂O₃ and the Pt of the capillary.¹⁸ In a typical experiment, the capillary containing the reaction mixture was translated into the preheated furnace and data were collected in 0.25 s time slices for 120 s (480 separate patterns) before the furnace power was turned off and the sample was allowed to cool. Samples typically reached \sim 1400 K within 5 s and cooled by 500 K within a similar period. Fit2D was used to integrate raw diffraction images,¹⁹ and Powder3D²⁰ was used to generate 2D surface plots of the data to allow quick qualitative examination.

For quantitative analysis, Rietveld refinements were carried out using the program TOPAS.²¹ Five phases were included in all refinements, MoO₃,²² ZrO₂,²³ α -ZrMo₂O₈,^{9,10} γ -ZrMo₂O₈,⁷ and Pt²⁴ from the capillary. An 18 term background function together with a pseudo-Voigt peak profile function was used. All lattice parameters were allowed to vary, but individual atomic coordinates were not. An overall isotropic thermal parameter was included for all phases except Pt, for which a separate isotropic thermal parameter was used.²⁵ The localized nature of the "hot spot" in the mirror furnace means that it is not possible to measure the variation in sample temperature throughout the experiment using a thermocouple. Temperature was therefore estimated based on refined cell parameters of the Pt capillary using an expression derived from thermal expansion coefficients reported by Edwards et al. and Manoun et al.^{26–28} An independent check was performed using thermal expansion data for ZrO₂,²⁹ with little difference between

[†] University of Durham.

^{*} Christian-Albrechts-Universität zu Kiel.

[§] European Synchrotron Radiation Facility.

the two methods. The resulting temperature profiles for all experiments are given in the Supporting Information.

Figure 1. Two-dimensional film plots of the diffraction data obtained for (a) ratio of ZrO_2 and MoO_3 1:2 in the starting mixture at 1520 K and (b) ratio of ZrO_2 and MoO_3 1:3 in the starting mixture at 1400 K. The strongest ZrO_2 and MoO_3 peaks are indicated by \dagger and * respectively.

Figure 1a shows diffraction data obtained using a furnace power of 72%. We estimate that this corresponds to a temperature after 100 s in the furnace, T_{100} , of 1520 K. At low temperature, diffraction peaks correspond to ZrO₂, MoO₃, and the Pt of capillary walls as expected. On inserting the sample into the furnace, all peaks initially shift to lower 2θ indicating positive thermal expansion; certain reflections of MoO₃ shift more dramatically due to marked anisotropy in the thermal expansion of this layered structure. Between approximately 1.6 and 2.5 s ($T \approx 1030$ and 1260 K) peaks due to MoO₃ disappear and those of trigonal α -ZrMo₂O₈ are observed for the first time. A drop in the overall diffracted intensity occurs at this point, which is consistent with the melting of MoO₃ $(T_{\text{melt}} = 1068 \text{ K}).^9$ Between 2.5 and 5 s $(T \approx 1434 \text{ K})$ the amount of trigonal α-ZrMo₂O₈ increases before gradually disappearing. New peaks corresponding to cubic γ -ZrMo₂O₈ appear from 4.5 s ($T \approx$ 1400 K). These peaks disappear after a total elapsed time of 8 s (T \approx 1525 K), and ZrO₂ is the only crystalline material that remains. On quenching after 120 s (T falls from \sim 1520 to \sim 700 K within 8 s), significant quantities of cubic ZrMo₂O₈ were again observed in the diffraction data.

Results from the quantitative phase analysis are shown in Figure 2a. The data are plotted as Rietveld scale factor \times number of formula units per unit cell \times molar mass \times volume, or *ZMV*. This allows for absolute comparison between the different phases. We note that *ZMV* values derived before heating are consistent with a 1:2 molar ratio of ZrO₂ to MoO₃ as expected. Quantitative analyses confirm the phase evolution and show that cubic γ -ZrMo₂O₈ can be formed directly from the oxides but is only stable for a few seconds under these conditions.

Figure 2. Plots of composition obtained by quantitative Rietveld refinement versus time for experiments discussed. (a) ZrO_2/MoO_3 1:2 in starting mixture and 72% heater power ($T_{100} = 1520$ K), (b) ZrO_2 , MoO_3 1:2 in starting mixture and 70% heater power ($T_{100} = 1470$ K), (c) ZrO_2/MoO_3 1:2 in starting mixture and 68% heater power ($T_{100} = 1350$ K), and (d) ZrO_2 : MoO_3 1:3 in starting mixture and 70% heater power ($T_{100} = 1400$ K).

The observation that cubic γ -ZrMo₂O₈ disappeared during heating in this experiment, yet reformed on cooling, suggested that a lower temperature might favor the formation of crystalline cubic γ -ZrMo₂O₈. The experiment was therefore repeated at a lower power of 70% which corresponds to a final temperature of $T_{100} \approx$ 1470 K. Under these conditions melting of MoO₃ was again observed from ~1060 K, followed by growth of the trigonal phase which reached maximum intensity at ~7 s (Figure 2b). Significant amounts of the cubic phase began to form from ~ 6.5 s ($T \approx 1350$ K), and it was the dominant crystalline material with maximum intensity after ~ 12 s ($T \approx 1360$ K). After this point there was a slow increase in sample temperature (reaching \sim 1460 K by the end of the heating period), and ZMV of the cubic phase steadily decreased to zero. This loss of γ -ZrMo₂O₈ was accompanied by only a small rise in ZMV for ZrO₂. Again, once the heater was switched off, we observed γ -ZrMo₂O₈ on cooling. There was no evidence for the formation of the trigonal phase during this latter stage of the experiment. The loss of γ -ZrMo₂O₈ is consistent with either volatilization of MoO₃ (though one might then expect a more significant rise in ZMV of ZrO₂) or melting of γ -ZrMo₂O₈. We note that the phase diagram of ZrO₂-WO₃ has a peritectic point at 1530 K such that cubic ZrW₂O₈ melts to form ZrO₂ and a liquid slightly richer in WO₃.³⁰

Decreasing the power to the heater to 68% ($T_{100} \approx 1350$ K) results in trigonal α -ZrMo₂O₈ being formed after 8 s ($T \approx 1350$ K), persisting over the course of the entire experiment, even upon cooling, Figure 2c. There is no evidence of γ -ZrMo₂O₈ being formed at any time during the experiment. We conclude that this temperature is too low for formation of the cubic phase.

These three experiments were carried out using a ratio of 1:2 ZrO_2/MoO_3 , and it is notable that ZrO_2 is observed throughout the experiments. It is well known, however, that MoO₃ is volatile at high temperatures, which suggests that MoO₃ could be lost from the hot zone of the capillary at the temperatures used before it can react. A further experiment was therefore carried out using a ZrO₂/ MoO_3 ratio of 1:3 at a power of 70%, the results of which are shown in Figures 1b and 2d. Under these conditions trigonal ZrMo₂O₈ forms from \sim 4 s (T \sim 1310 K) and transforms cleanly to cubic γ -ZrMo₂O₈ from ~8 s (T ~1400 K), which is the only crystalline phase present thereafter.

These experiments show conclusively, and for the first time, that cubic γ -ZrMo₂O₈ can be synthesized directly from its constituent oxides, in contrast to previous assumptions. The reaction proceeds extremely rapidly at elevated temperatures with formation occurring within seconds at \sim 1360–1400 K. Reactions appear to occur via initial melting of MoO₃ which is accompanied by formation of trigonal ZrMo₂O₈. This phase grows in intensity, typically peaking around the point where the cubic phase starts to form. We note that similar experiments on ZrW2O8 in which the capillary temperature was gradually increased showed formation over a much slower (~ 60 min) time scale at a temperature estimated from the Pt cell parameter of \sim 1359 K. The published phase diagram shows $ZrW_2O_8^{30}$ is stable above 1378 K which gives confidence in our estimated sample temperatures. Cubic γ -ZrMo₂O₈ is stable over the time periods of these experiments at a temperature of ~ 1400 K, as evidenced by the data of Figure 2d. The data of Figure 2a and 2b both show that as temperature exceeds \sim 1460 K the amount of crystalline γ -ZrMo₂O₈ decreases significantly. These observations are consistent with melting at this temperature. These preliminary investigations suggest that the high temperature behavior of ZrMo₂O₈ is not dissimilar to that of ZrW₂O₈, which is thermody-

namically stable from 1378 to 1530 K. The cubic phases of both materials are presumably entropically stabilized at high temperature.

Acknowledgment. We would like to thank EPSRC for sponsorship under Grant EP/C538927/1 and STFC for access to facilities at the ESRF. S.E.L. thanks Durham University for a Doctoral Training Fellowship.

Supporting Information Available: 2D film plots for the experiments not shown are available as Supporting Information along with temperature profiles for all experiments. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) Evans, J. S. O. J. Chem. Soc., Dalton Trans. 1999, 3317.
- Sleight, A. W. Annu. Rev. Mater. Sci. 1998, 28, 29.
 Sleight, A. W. Inorg. Chem. 1998, 37, 2854.
- (4) Mary, T. A.; Evans, J. S. O.; Vogt, T.; Sleight, A. W. Science 1996, 272, 90.
- (5) (a) Evans, J. S. O.; Mary, T. A.; Vogt, T.; Subramanian, M. A.; Sleight, A. W. Chem. Mater. **1996**, 8, 2809. (b) Evans, J. S. O.; Hu, Z.; Jorgensen, J. D.; Argyriou, D. N.; Short, S.; Sleight, A. W. Science **1997**, 275, 61.
- (6) We note that the nomenclature of ZrMo₂O₈ phases is, confusingly, different from that of ZrW₂O₈ but follows here normal conventions in the literature. (7) Lind, C.; Wilkinson, A. P.; Hu, Z.; Short, S.; Jorgensen, J. D. Chem. Mater.
- (8) Lind, C.; Wilkinson, A. P.; Rawn, C. J.; Payzant, E. A. J. Mater. Chem. **2001**, *11*, 3354. 1998, 10, 2335.
- (9) Auray, M.; Quarton, M.; Tarte, P. Acta Crystallogr. 1986, C42, 257.
 (10) Auray, M.; Quarton, M.; Tarte, P. Powder Diffraction 1987, 2, 36.
- (11) Serezhkin, V. N.; Efremov, V. A.; Trunov, V. K. Russ. J. Inorg. Chem.
- 1987, 32, 1568. (12) Klevtsova, R. F.; Glinskaya, L. A.; Zolotova, E. S.; Klevtsov, P. V. Doklady
- Akademii Nauk SSSR 1989, 305, 91
- (13) Varga, T.; Lind, C.; Wilkinson, A. P.; Xu, H.; Lesher, C. E.; Navrotsky, A. Chem. Mater. 2007, 19, 468.
- (14) Samant, M. S.; Dharwadkar, S. R.; Phadnis, A B.; Namboodiri, P. N. Mater. *Chem. Phys.* **1993**, *35*, 120. (15) Allen, S.; Warmingham, N. R.; Gover, R. K. B.; Evans, J. S. O. *Chem.*
- Mater. 2003, 15, 3406.
- (16) Labiche, J. C.; Mathon, O.; Pascarelli, S.; Newton, M. A.; Ferre, G. G.; Curfs, C. ; Vaughan, G.; Homs, A.; Carreiras, D. F. Rev. Sci. Instrum. 2007, 78, 091301.
- (17) Moussa, S. M.; Ibberson, R. M.; Bieringer, M.; Fitch, A. N.; Rosseinsky,
- (11) Motion G. W.; Evans, J. S. O. J. Appl. Crystallogr. 2007, 40, 87.
 (18) Stinton, G. W.; Evans, J. S. O. J. Appl. Crystallogr. 2007, 40, 87.
 (19) Hammersley, A. P.; Svensson, S. O.; Hanfland, M.; Fitch, A. N.; Häusermann, D. High Pressure Res. 1996, 14, 235.
- (20) Hinrichsen, B.; Dinnebier, R. E.; Jansen, M. Z. Kristallogr. 2004, 23, 231. (21) A.A. Coelho, TOPAS v4.1: General Profile and Structure Analysis Software for Powder Diffraction Data, 2008.
- (22) Kihlborg, L. Ark. Kemi 1963, 21, 357.
- (23) Hill, R. J.; Cranswick, L. M. D. J. Appl. Crystallogr. 1994, 27, 802.
- (24) Swanson, H. E.; Tatge, E. Natl. Bur. Stand. 1953, 539, 1.
- (25) Pt of the capillaries initially shows significant texture effects due to the manufacturing process. Diffracted intensities therefore change through the experiment as Pt recrystallizes. This does not affect cell parameter determination significantly.
- (26) From the thermal expansion data a polynomial was derived from which the temperature could be calculated from the refined Pt lattice parameter. The polynomial is of the form Temp(K) = $(((-1.90601 \times 10^{-5})^{-4}(4.64016 \times 10^{-8}) \times (3.91704 - 1pa))^{0.5})/(2.231 \times 10^{-8})$, where 1pa is the refined Pt lattice parameter at that particular temperature. (27) Edwards, J. W.; Speiser, R.; Johnston, H. L. J. Appl. Phys. **1951**, 22, 424.
- (28) Manoun, B.; Saxena, S. K.; Liermann, H. P.; Barsoum, M. W. J. Am. Ceram. Soc. 2005, 88, 3489.
- (29) Taylor, D. Br. Ceram. Trans. J. 1985, 84, 9.
- (30) Chang, L. L. Y.; Scroger, M. G.; Phillips, B. J. Am. Ceram. Soc. 1967, 50, 211
- JA907648Z